Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Optimum Design Parameters of Horizontal Parallel Pipe and Vertical U-Tube Ground Heat Exchangers

[+] Author Affiliations
Hakan Demir, Ahmet Koyun, Ş. Özgür Atayılmaz

Yildiz Technical University, Istanbul, Turkey

Paper No. HT2009-88206, pp. 621-627; 7 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The most important part of a ground source heat pump (GSHP) is the ground heat exchanger (GHE) that consists of pipes buried in the soil and is used for transferring heat between the soil and the heat exchanger of the ground source heat pump. Soil composition, thermal properties and water content affect the length of ground heat exchanger. Another parameter affects the size of the ground heat exchanger is the shape. There are two basic ground heat exchanger configurations: vertical U-tube and horizontal parallel pipe. There are plenty of works on ground source heat pumps and ground heat exchangers in the literature. Most of the works on ground heat exchangers are based on the heat transfer in the soil and temperature distribution around the coil. Some of the works for thermo-economic optimization of thermal systems are based on thermodynamic cycles. This study covers comparative thermo-economical analysis of horizontal parallel pipe and vertical u-tube ground heat exchangers. An objective function has been defined based on heating capacity, investment and energy consumption costs of ground heat exchanger. Investment and energy consumption costs were taken into account as total cost in the objective function. The effects of the soil thermal conductivity, number of pipes, thermal capacity of ground heat exchanger, pipe diameter and the burial depth on the objective function were examined. The main disadvantage of U-tube ground heat exchanger is higher borehole cost that makes installation cost higher than parallel pipe ground heat exchanger. To make reference functions equal for both type of ground heat exchangers, the borehole cost must be under 20 $/m (now 55 $/m) for a given heating or cooling capacity. The performance of ground heat exchangers depends on the soil characteristics especially the soil thermal conductivity.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In