0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Investigation Into the Flow Field in a Four Row Staggered Plate Fin-and-Tube Heat Exchanger Experiencing Gross Fin-Side Flow Maldistribution Using the K-ω Turbulence Model

[+] Author Affiliations
J. Hoffmann-Vocke, J. Neale, M. Walmsley

The University of Waikato, Hamilton, New Zealand

Paper No. HT2009-88191, pp. 611-620; 10 pages
doi:10.1115/HT2009-88191
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The flow field in a section of a four-row staggered plate fin-and-tube heat exchanger with gross inlet flow maldistribution has been investigated using CFD modelling. The commercial CFD code Fluent 6.3 has been used to carry out 3D unsteady flow modelling using the low Reynolds number variation of the standard k-ω turbulence model. A significant amount of flow dispersion is shown to occur upstream of the heat exchanger inlet resulting in a 37% reduction in inlet velocity before the flow enters the heat exchanger. Flow dispersion as the fluid passes through the heat exchanger results in a further 28% reduction in the average flow velocity. Significant sections of the heat exchanger experience angled flow resulting in a flow pattern commonly seen in inline tube arrangements. The lower friction factor of the inline flow regime results in a higher mass flux when compared to areas exhibiting the staggered flow regime. This variation results in off-centre velocity peaks entering and leaving the heat exchanger. On average the non-uniform flow cases resulted in a 29.4% increase in pressure drop across the heat exchanger system when compared to uniform flow conditions. Average heat transfer coefficients for the non-uniform flow conditions showed a 20.3% increase over uniform flow conditions of equal mass flow.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In