Full Content is available to subscribers

Subscribe/Learn More  >

Flow Characteristics of Aluminium Oxide Nanofluids

[+] Author Affiliations
Vanessa M. Egan, Patrick A. Walsh, Edmond J. Walsh

University of Limerick, Limerick, Ireland

Paper No. HT2009-88450, pp. 521-530; 10 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


The current study is an investigation in the flow characteristics of aluminium oxide nanofluids. Relative viscosity measurements are obtained for varying volume fractions using both a rotational viscometer and an experimental setup designed for pressure drop measurements in tubes. The effect of nanoparticle size and preparation method is also investigated as predispersed nanofluids of nominal particle size 10nm and 50nm are compared with each other and with a fluid mixed from Al2 O3 nanopowder. Volume fractions of between 1% and 7% were tested. The first method employed to obtain viscosities is based on the Hagen-Poiseuille equation for laminar pipe flow, where pressure drop measurement and flow rate measurements are used to determine relative viscosities of various nanofluids samples. Viscosity measurements were also obtained for a number of solutions on a rotational viscometer and compared to the latter and existing models available in the literature. Overall, it was found during experimentation that the relationship between pressure and flow rate for the various nanofluids was linear indicating that the fluids were Newtonian in nature. An increase in viscosity was recorded for increasing volume fraction; however this was seen to be negligible for volume fractions lower than 1%. Overall it was also seen that both methods of determining relative viscosity were in good agreement. There was not a clear indication of the effect of nanoparticle size on the relative viscosity however the nanofluids formulated from purchased Al2 O3 powder resulted in a considerably lower relative viscosity when compared to both nanofluids purchased pre-dispersed from suppliers.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In