Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conductivity of α-Tetragonal Boron Nanoribbons

[+] Author Affiliations
Scott W. Waltermire, Juekuan Yang, Deyu Li

Vanderbilt University, Nashville, TN

Terry T. Xu

The University of North Carolina at Charlotte, Charlotte, NC

Paper No. HT2009-88347, pp. 505-506; 2 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Elemental boron has many interesting properties, such as high melting point, low density, high hardness, high Young’s modulus, good oxidation resistance, resulting from its complex crystalline structure from its electron-deficient nature. Boron forms complex crystalline structures according to the various arrangements of B12 icosahedra in the lattice, such as α (B12 )- and β (B105 )-rhombohedral and α (B50 )- and β (B196 )-tetragonal boron polymorphs, among others. Even though considerable materials research has been conducted over the past half century on boron and boron-based compounds, investigating their unique structures and corresponding properties, our understanding of this complex class of materials is still poor, compared to some other well-studied materials with much simpler structures such as silicon. Thermal transport studies through bulk boron have been performed mainly on β-rhombohedral and amorphous boron, because of the difficulty to grow high quality bulk α-rhombohedral boron samples [1–3]. Some efforts have been made to measure B12 As2 , B12 P2 , AlB12 samples that have an α-rhombohedral form [2,3]. There is almost no information available on α-tetragonal boron. However, Slack predicted the thermal conductivity of α-boron should be ∼200 W/m-K at room temperature, which is 1/2 that of copper. Large phonon mean free path has been predicted for α-boron (from ∼200 nm at room temperature to 6 nm at the Debye temperature), which could lead to interesting thermal transport properties for low dimensional boron structures.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In