0

Full Content is available to subscribers

Subscribe/Learn More  >

Overview of Radiative Transfer in Cellular Porous Materials

[+] Author Affiliations
R. Viskanta

Purdue University, West Lafayette, IN

Paper No. HT2009-88648, pp. 457-465; 9 pages
doi:10.1115/HT2009-88648
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Highly porous cellular materials capable of absorbing, emitting and scattering radiation are finding use at low and high temperatures in a range of traditional and modern technologies. The motivation for use of cellular materials is attributed to the high volumetric heat transfer rate (i.e., large surface area to volume ratio, high volumetric heat transfer coefficient), and large mixing rate due to the tortuosity of open cell foams. A brief overview of simulating heat transfer in cellular materials is presented and most important modeling parameters are identified, but the focus of the discussion is on heat transfer in cellular materials in the presence of radiation environment. Several examples involving radiation, conduction and radiation as well as convection and radiation for different technological applications are discussed, and the models are assessed by comparing the predictions with experimental data.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In