0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of the Linear Driving Force Approximation in Adsorption Heat Pump and Chiller Modeling

[+] Author Affiliations
Alex Raymond, Srinivas Garimella

Georgia Institute of Technology, Atlanta, GA

Paper No. HT2009-88426, pp. 353-361; 9 pages
doi:10.1115/HT2009-88426
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Adsorption heat pumps and chillers can utilize solar or waste heat to provide space conditioning, process heating or cooling, or energy storage. In these devices, accurate modeling of intraparticle adsorbate mass transfer is an important part of predicting overall performance. The linear driving force (LDF) approximation is often used for modeling intraparticle mass transfer in place of the more detailed Fickian diffusion (FD) equation for its computational simplicity. This paper directly compares the adsorbate contents predicted by the conventional LDF approximation, an empirical LDF approximation proposed by El-Sharkawy et al. [1], and the FD equations for cylindrical adsorbent fibers such as activated carbon fiber (ACF). The conditions under which the LDFs agree with the FD equation are then evaluated. It is shown that for a given working pair, agreement between the LDF and FD equations is affected by the diffusivity, particle radius, half-cycle time, initial adsorbate content, and equilibrium adsorbate content. The maximum possible error in adsorbate content predicted by the LDF approximation compared with the FD solution is then calculated for the ACF (A-20)-ethanol working pair. Although the maximum error will be different for other cases, the technique used in this paper can be reproduced to determine the greatest possible LDF error for any working pair.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In