Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Results for Light-Induced Boiling in Water-Based Graphite Nanoparticle Suspensions

[+] Author Affiliations
Robert A. Taylor, Patrick E. Phelan, Ronald J. Adrian, Ravi S. Prasher

Arizona State University, Tempe, AZ

Todd Otanicar

Loyola Marymount University, Los Angeles, CA

Paper No. HT2009-88176, pp. 155-163; 9 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


One relatively simple subset of nanotechnology is nanofluids, obtained by the addition of nanoparticles to a conventional base fluid. The promise of nanofluids stems from the fact that at relatively small particle loading (typically <1% by volume) significant enhancement in thermal transport may be possible [1–3]. Since there are a wide variety of nanoparticle materials to choose from, nanofluidic systems can be tuned to fit a number of applications. This research focuses on direct thermal collection of light energy using highly absorptive nanofluids. Experimental tests are conducted using a 0.1% by volume graphite/water (30nm nominal particle diameter) nanofluid exposed to a 130 mW, 532 nm, continuous laser. A lens is placed between the laser and the fluid to achieve a high-energy flux (∼ 490 Wcm−2 ). Since initially over 99.9% of the light is absorbed in a path length of 0.1 mm, the irradiated portion of the base fluid collects enough energy to vaporize. Heuristic methods of analysis demonstrate this situation incorporates several interesting modes of heat transfer and fluid mechanics. These experiments also reveal the possibility for novel solar collectors in which the working fluid directly absorbs energy and undergoes phase change in a single step.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In