0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of the Capillary Property of Porous Media on the Water Transport Characteristics in a Passive Liquid-Feed DMFC

[+] Author Affiliations
Chao Xu, Amir Faghri

University of Connecticut, Storrs, CT

Paper No. HT2009-88133, pp. 113-127; 15 pages
doi:10.1115/HT2009-88133
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The porous diffusion medium (DM) used in fuel cells has a complex heterogeneous structure in which both hydrophilic and hydrophobic pores coexist. The capillary flow in such a mixed-wet DM is mainly controlled by the capillary pressure and saturation relation (CPSR). In order to investigate the water transport characteristics in a passive DMFC, taking into account the coexistence of the hydrophilic and hydrophobic pores in the DM, we presented the mechanisms of capillary flow in the mixed-wet DM and provided a comprehensive evaluation of the CPSRs used in various existing fuel cell studies. Then, based on a two-dimensional two-phase non-isothermal model for the passive DMFC, we also investigated the liquid transport phenomena through the mixed-wet DM by employing an experimentally measured mixed-wet CPSR. Moreover, we compared the water transport predicted by the mixed-wet CPSR and the uniform-wet Leverett CPSR for better understanding of the liquid water transport in passive DMFCs. The results show that water transport in the passive DMFC depends greatly on the CPSR of the DM, which demonstrates an urgent need for the accurate CPSRs of the DM used in fuel cells. It is also shown that the dependence of water transport on the CPSRs can be significantly influenced by the use of a hydrophobic air filter layer at the cathode.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In