0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Efficient Data Centers Using Evaporative Cooling and Air Side Economizers

[+] Author Affiliations
Madhusudan Iyengar, Roger Schmidt

IBM, Poughkeepsie, NY

Paper No. IPACK2011-52210, pp. 623-627; 5 pages
doi:10.1115/IPACK2011-52210
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME

abstract

Information Technology (IT) data centers consume a large amount of electricity in the US and world-wide. Cooling has been found to contribute about one third of this energy use. The two primary contributors to the data center cooling energy use are the refrigeration chiller (about 50% of cooling) and the Computer Room Air Conditioning units (about 33% of cooling). This paper focuses on a data center configuration that eliminates the use of the chiller plant thereby yielding substantial energy savings. One method of eliminating the chiller plant is to directly pump outdoor air into a data center with some amount of conditioning (particulate filtration). This configuration is can be called Direct Air Side Economizer (ASE). Since computer equipment is usually designed with the assumption that the rack air inlet temperatures are in the 15–32 °C range, the use of ASE is constrained to use only in those geographies where the outdoor air conditions allow such direct air use. One method to reduce the sensible air temperature of the outdoor air that is being ducted into a data center room is water evaporation directly into the air stream. Such a method can be called Evaporative Air Side Economizer (EASE). This paper discusses the benefits of EASE data center configurations in the context of the climate in the USA and realizable energy savings compared with traditional chiller plant based cooling loops. Hour by hour outdoor air temperature data for a typical year and psychometric charts are utilized in conjunction with simple transfer functions to model cooling via evaporative media. Phoenix, a US city in a hot climate is used to illustrate the use of the relatively new method of data center cooling. A comparison to the traditional chiller plant based approach resulted in about 30% of energy savings at the data center level.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In