Wear of Silicon and Carbon-Based Nanoscale Asperities PUBLIC ACCESS

[+] Author Affiliations
Jingjing Liu, Sean D. O’Connor, Jacob Notbohm, Kumar Sridharan, Kevin T. Turner

University of Wisconsin-Madison, Madison, WI

Bernd Gotsmann, Mark A. Lantz, Rachel J. Cannara

IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Nicolaie Moldovan, John A. Carlisle

Advanced Diamond Technologies Inc., Romeoville, IL

Robert W. Carpick

University of Pennsylvania, Philadelphia, PA

Paper No. IJTC2008-71135, pp. 37; 1 page
  • STLE/ASME 2008 International Joint Tribology Conference
  • STLE/ASME 2008 International Joint Tribology Conference
  • Miami, Florida, USA, October 20–22, 2008
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4336-9 | eISBN: 978-0-7918-3837-2
  • Copyright © 2008 by ASME


Wear at the nanoscale is a key limitation of conventional silicon and silicon nitride atomic force microscope (AFM) probe tips. Tip degradation and contamination induced by tip-sample interactions can result in decreased resolution and uncertainty in AFM measurements. Prediction and control of the wear behavior is challenging since there is no rigorous theory for the wear of a <100 nm asperity. However, ultrananocrystalline diamond (UNCD) and diamond-like carbon (DLC) are potentially ideal materials for AFM probe applications because of their high stiffness and hardness, low surface roughness, low macroscale friction coefficient and wear, and chemical inertness. The nanoscale adhesion and wear behavior of UNCD, DLC, silicon, and silicon nitride AFM probes have been characterized through systematic AFM wear tests and characterization of the corresponding nanoscale modification of the tips through transmission electron microscopy (TEM) imaging, AFM-based adhesion measurements, and AFM-based blind reconstruction of the tip shape. Our results demonstrate that significant reductions in the nanoscale wear can be achieved through the use of these carbon-based materials. We will discuss how the nanoscale wear behavior of the tips can be linked to their intrinsic materials properties through consideration of the mechanics and physics of nanoscale contacts.

Copyright © 2008 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In