0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Modeling of Air-Cooled Data Centers: Part I—The Optimization of Enclosed Aisle Configurations

[+] Author Affiliations
Dustin W. Demetriou, H. Ezzat Khalifa

Syracuse University, Syracuse, NY

Paper No. IPACK2011-52003, pp. 385-394; 10 pages
doi:10.1115/IPACK2011-52003
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME

abstract

The work presented in this paper describes a simplified thermodynamic model that can be used for exploring optimization possibilities in air-cooled data centers. The model is used to parametrically evaluate the total energy consumption of the data center cooling infrastructure for data centers that utilize aisle containment. The analysis highlights the importance of reducing the total power required for moving the air within the CRACs, the plenum, and the servers, rather than focusing primarily or exclusively on reducing the refrigeration system’s power consumption and shows the benefits of bypass recirculation in enclosed aisle configurations. The analysis shows a potential for as much as a 57% savings in cooling infrastructure energy consumption by utilizing an optimized enclosed aisle configuration with bypass recirculation, instead of a traditional enclosed aisle, where all the data center exhaust is forced to flow through the computer room air conditioners (CRACs), for racks with a modest temperature rise (∼10°C). However, for racks with larger temperature rise (> ∼20°C), the saving are less than 5%. Furthermore, for servers whose fan speed (flow rate) varies as a function of inlet temperature, the analysis shows that the optimum operating regime for enclosed aisle data centers falls within a very narrow band and that power reductions are possible by lowering the uniform server inlet temperature in the enclosed aisle from 27°C to 22°C. However, the optimum CRAC exit temperature over the 22-to-27°C range of enclosed cold aisle temperature falls between ∼16 and 20°C because a significant reduction in the power consumption is possible through the use of bypass recirculation. Without bypass recirculation, the power consumption for a server inlet temperature of 22°C enclosed aisle case with a server temperature rise of 10°C would be a whopping 43% higher than with bypass recirculation. It is worth noting that, without bypass recirculation maintaining the enclosed cold aisle at 22°C instead of 27°C would reduce power consumption by 48%. It is also shown that enclosing the aisles together with bypass recirculation (when beneficial) also reduces the dependence of the optimum cooling power on server temperature rise.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In