0

Full Content is available to subscribers

Subscribe/Learn More  >

High Performance Micro-Grooved Evaporative Heat Transfer Surface for Low Grade Waste Heat Recovery Applications

[+] Author Affiliations
Vibhash Jha, Serguei Dessiatoun, Michael Ohadi, Amir Shooshtari

University of Maryland, College Park, College Park, MD

Ebrahim Al-Hajri

The Petroleum Institute, Abu Dhabi, UAE

Paper No. IPACK2011-52179, pp. 277-283; 7 pages
doi:10.1115/IPACK2011-52179
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME

abstract

The continued demand for high performance electronic products and the simultaneous trend of miniaturization has raised the dissipated power and power densities to new unprecedented levels in electronic systems. Thermal management is becoming increasingly critical to the electronics industry to satisfy the increasing market demand for faster, smaller, lighter and more cost effective products. Utilization of waste heat for the purpose of cooling chip is a promising area for enhancing the thermal management and net energy efficiency of the system. This paper focuses on the development of a tubular microgrooved evaporator and its performance characterization based on heat transfer coefficients and pressure drop measurements. Channel with aspect ratio of 3:1 (channel width – 100 μm, channel height – 300 μm) microgrooved structure was used in the evaporator. The system has been tested with R134a as refrigerant for refrigerant flow rate range of 0.005–0.02 kg/s and water flow rate range of 0.25–0.65 kg/s. Very promising results has been obtained in preliminary investigation. Heat transfer coefficient as high as 13,500 W/m2k has been obtained which is almost five times higher than comparative state of art technologies. The associated pressure drop is quite modest and much less than state of the art conventional evaporators.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In