Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Resistance Measurement and Thermal Network Analysis of Printed Circuit Board With Thermal Vias

[+] Author Affiliations
Tomoyuki Hatakeyama, Masaru Ishizuka, Sadakazu Takakuwa

Toyama Prefectrual University, Imizu, Toyama, Japan

Shinji Nakagawa

Toyama Prefectural University, Imizu, Toyama, Japan

Paper No. IPACK2011-52168, pp. 251-258; 8 pages
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME


Thermal vias are widely used to reduce thermal resistance of a printed circuit board (PCB). However, fine via structure becomes an obstacle to computational fluid dynamics (CFD) simulation because fine structure requires a huge number of meshes. Therefore, an efficient modeling method of thermal via structure is needed to reduce computational time. In this paper, an effect of thermal vias on reduction of thermal resistance was experimentally and numerically investigated to gather fundamental data for thermal management of electronics. We used printed circuit board models with some kind of arrangements of thermal vias. Board materials and copper dissipating pad patterns were explored as experimental parameters. Copper pipes (unfilled vias) or rods (filled vias), the diameter of which was 1.5, 3.0 and 5.0 mm, were used as thermal via. Three materials (Glass epoxy, Stainless, and Polycarbonate), thermal conductivity of which were different, were used as board materials. The experimental results showed that area of heat dissipating copper pad patterns and board materials have strong effect on the temperature rise of the heat source. On the other hand, the number of thermal vias and via shapes have no effect on the heat source temperature. Then we performed thermal network analysis to evaluate the experimental results. From the results of the thermal network analysis, it was confirmed that an effect of thermal via is saturated at certain ratio of via area.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In