Full Content is available to subscribers

Subscribe/Learn More  >

On the Lateral Motion of Bubbles Generated From Re-Entrant Cavities Located on Asymmetrically Structured Surfaces

[+] Author Affiliations
Naveenan Thiagarajan, Sushil H. Bhavnani, Charles Ellis

Auburn University, Auburn, AL

Florian Kapsenberg, Vinod Narayanan

Oregon State University, Corvallis, OR

Paper No. IPACK2011-52056, pp. 123-131; 9 pages
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME


This paper describes a novel concept of lateral motion of bubbles in pool boiling, which has the potential to be translated into a liquid propulsion system when used in a closed loop. The lateral motion of bubbles is achieved due to nucleation from cavities on an asymmetric saw-tooth profile created on a silicon surface. The surface modification involves etching a 3D sawtooth structure with a nominal angle of approximately 24° using gray-scale lithography. The downstream slope of each sawtooth structure features re-entrant cavity structures that act as controlled nucleation sites. The angle of the surface thus obtained causes a net imbalance of forces acting in concert on the flow field around the bubbles departing from the surface. The first part of the paper discusses the steps involved in fabricating such a heat sink with a saw-tooth structure augmented by re-entrant cavities. This is followed by description of the experimental facility used for studying the feasibility of the concept. High-speed photography in conjunction with bubble tracking is used to determine the bubble velocities. Results for a subcooled condition show substantial axial bubble velocities on the order of up to 68.5 cm/s near the cavities and a far-field velocity of up to 4 cm/s.

Copyright © 2011 by ASME
Topics: Motion , Bubbles , Cavities



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In