0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Heat Transfer Characteristics in Miniature Loop Heat Pipes With Rectangular Shaped Evaporator

[+] Author Affiliations
Z. R. Lin, Z. Y. Lee, L. W. Zhang

Novark Technology, Inc., Shenzhen, Guangdong, China

S. F. Wang

South China University of Technology, Guangzhou, Guangdong, China

A. A. Merrikh, G. Refai-Ahmed

Advanced Micro Devices, Inc., Austin, TX

Paper No. IPACK2011-52017, pp. 19-27; 9 pages
doi:10.1115/IPACK2011-52017
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4462-5
  • Copyright © 2011 by ASME

abstract

Loop heat pipe (LHP) is a highly efficient cooling device. It has gained great attention in the electronics cooling industry due to its superior heat transport capability — that is, its ability to carry heat over long distances. For this article, a miniature flat loop heat pipe (MFLHP) with rectangular-shaped evaporator was developed. The LHP’s evaporator was combined with the compensation chamber. MFLHPs with different diameters and lengths for the connecting pipeline were selected for a series of experimental studies on their heat transfer characteristics. In these experiments, pure water was used as the working fluid. The studies showed that the heat transport capability of a MFLHP with 4 mm diameter was better than that a MFLHP with 3 mm diameter. At a low thermal resistance of 0.04°C /W (at 200W), an optimal length for the connecting pipeline for a particular MFLHP with 4 mm diameter was identified. Finally, a heat sink attached to a MFLHP was developed for cooling a graphics processing unit (GPU), the thermal design power (TDP) of which was 200 W. The results showed the GPU heat sink with MFLHP had good performance and satisfied GPU cooling requirements. Compared to the conventional heat pipe solutions, only one MFLHP was able to cope with high power dissipation, offering the potential to make a lighter heat sink.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In