0

Full Content is available to subscribers

Subscribe/Learn More  >

Material Optimization for Concentrated Solar Photovoltaic and Thermal Co-Generation

[+] Author Affiliations
Kazuaki Yazawa, Ali Shakouri

University of California Santa Cruz, Santa Cruz, CA

Paper No. IPACK2011-52190, pp. 733-739; 7 pages
doi:10.1115/IPACK2011-52190
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4461-8
  • Copyright © 2011 by ASME

abstract

We conducted an analytic study of concentrated solar photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. By co-optimizing the electricity generation and heat transport in the system, one can minimize the cost of the key materials and compare different tradeoffs as a function of concentration ratio or other parameters. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35–40% efficiency. They are suitable for high photon energy flux and they are already available in the market. However, due to high heat fluxes at large concentrations, such as 100–1000 Suns, heat sinks could be costly in terms of material mass, space, energy for pumping fluid, and system complexity. In addition, since the efficiency of solar cells decreases as the ambient temperature increases, there is a tradeoff between electricity and hot water cogeneration. Similar to our previous analysis of thermoelectric (TE) and hot water co-generation, PV/solar thermal system is also optimized. The results are compared with thermoelectric systems as a function of the concentration ratio. The solar concentrated co-generation system using either PV or TE for direct electricity generation collects more than 80% of solar energy when it is optimized. We calculate the overall cost minima as a function of concentration ratio. Although there are some differences between PV and TE, the optimum concentration ratio for the system is in the range of 100–300 Suns for both.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In