0

Full Content is available to subscribers

Subscribe/Learn More  >

Lead Free Flip Chip Reliability for Various Package Types

[+] Author Affiliations
Nokibul Islam, Miguel Jimarez, Ahmer Syed

Amkor Technology Inc., Chandler, AZ

TaeKyeong Hwang, JaeYun Gim, WonJoon Kang

Amkor Technology Korea, Inc., Seoul, Korea

Paper No. IPACK2011-52260, pp. 609-615; 7 pages
doi:10.1115/IPACK2011-52260
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4461-8
  • Copyright © 2011 by ASME

abstract

Flip Chip (FC) technology has now become the mainstream solution for high performance packages. From commercial gaming machines to high reliability servers, the FC package is gaining more market share over traditional packaging technologies, such as wire bond. Extensive research has been carried out to make the flip chip more robust, smaller foot prints, and excellent performance. FC packages are fabricated typically in two main configurations. Bare die FC packages leave the non active side of the die exposed. This allows the customer to apply their preferred heat dissipation scheme during board level attach. Lidded FC packages use a metallic lid attached to the die. Bare die package can be further subdivided into bare die underfilled package and bare die flip chip molded ball grid array (FCm BGA) package. Each of these packaging configurations has advantages as well as disadvantages. FCm BGA uses molding compound or EMC instead of capillary underfill, to protect FC die, and eliminate the need for a lid. Package warpage reduced a lot by adding a lid with the bare die FC package. However, the package and board level reliability for the above package types are still debatable. In this study test vehicles with three package types with bumps and BGAs are daisy chain to measure in situ data during accelerated tests. Impact of standard vs. low CTE (coefficient of thermal expansion) core substrate, accelerated temperature cycle conditions (temperature cycle condition “B”, “H”, and “J” according to JEDEC), and package level vs. package mounted on the board level reliability will be investigated. Comprehensive reliability data will help to select the right package type for next generation large die large body flip chip application.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In