Full Content is available to subscribers

Subscribe/Learn More  >

Stress Intensity Factor Analysis of an Interfacial Corner Between Piezoelectric Bimaterials in a Two Dimensional Structure Using the H-Integral Method

[+] Author Affiliations
Toru Ikeda, Hiroshi Hirai, Mitsutoshi Abe, Masatsugu Chiba, Noriyuki Miyazaki

Kyoto University, Kyoto, Japan

Paper No. IPACK2011-52073, pp. 463-471; 9 pages
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4461-8
  • Copyright © 2011 by ASME


A corner of bonded dissimilar materials is one of the main causes of the failure of electronic packages or MEMS structures. These materials are sometimes anisotropic materials and piezoelectric materials. To evaluate the integrity of a corner of bonded piezoelectric materials is useful for the reliability of electronic packages and MEMS. Asymptotic solutions around the interfacial corner between piezoelectric bimaterials can be obtained by the combination of the Stroh formalism and the Williams eigenfunction expansion method. Based on an extension of the Stroh formalism and the H-integral derived from Betti’s reciprocal principle for piezoelectric problems, we analyzed the stress intensity factors (SIFs) and asymptotic solutions of piezoelectric bimaterials. The eigenvalues and eigenvectors of an interfacial corner between dissimilar piezoelectric anisotropic materials are determined using the key matrix. The H-integral for piezoelectric problems is introduced to obtain the scalar coefficients, which are related to the SIFs. We propose a new definition of the SIFs of an interfacial corner for piezoelectric materials, and we demonstrated the accuracy of the SIFs by comparing the asymptotic solutions with the results obtained by the finite element method (FEM) with very fine meshes. Proposed method can analyze the stress intensity factors of a corner and a crack between dissimilar isotropic materials, anisotropic materials and anisotropic piezoelectric materials.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In