0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced First Core Design for the Westinghouse AP1000

[+] Author Affiliations
Robert J. Fetterman

Westinghouse Electric Company, Monroeville, PA

Paper No. ICONE17-75806, pp. 167-174; 8 pages
doi:10.1115/ICONE17-75806
From:
  • 17th International Conference on Nuclear Engineering
  • Volume 5: Fuel Cycle and High and Low Level Waste Management and Decommissioning; Computational Fluid Dynamics (CFD), Neutronics Methods and Coupled Codes; Instrumentation and Control
  • Brussels, Belgium, July 12–16, 2009
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4355-0 | eISBN: 978-0-7918-3852-5
  • Copyright © 2009 by ASME

abstract

As the nuclear renaissance is now upon us and new plants are either under construction or being ordered, a considerable amount of attention has also turned to the design of the first fuel cycle. Requirements for core designs originate in the Utilities Requirements Document (URD) for the United States and the European Utilities Requirements (EUR) for Europe. First core designs created during the development of these documents were based on core design technology dating back to the 1970’s, where the first cycle core loading pattern placed the highest enrichment fuel on the core periphery and two other lower enrichments in the core interior. While this sort of core design provided acceptable performance, it underutilized the higher enriched fuel assemblies and tended to make transition to the first reload cycle challenging, especially considering that reload core designs are now almost entirely of the Low Leakage Loading Pattern (LLLP) design. The demands placed on today’s existing fleet of pressurized water reactors for improved fuel performance and economy are also desired for the upcoming Generation III+ fleet of plants. As a result of these demands, Westinghouse has developed an Advanced First Core (AFCPP ) design for the initial cycle loading pattern. This loading pattern design simulates the reactivity distribution of an 18 month low leakage reload cycle design by placing the higher enriched assemblies in the core interior which results in improved uranium utilization for those fuel assemblies carried through the first and second reload cycles. Another feature of the advanced first core design is radial zoning of the high enriched assemblies, which allows these assemblies to be located in the core interior while still maintaining margin to peaking factor limits throughout the cycle. Finally, the advanced first core loading pattern also employs a variety of burnable absorber designs and lengths to yield radial and axial power distributions very similar to those found in typical low leakage reload cycle designs. This paper will describe each of these key features and demonstrate the operating margins of the AFC design and the ability of the AFC design to allow easy transition into 18 month low leakage reload cycles. The fuel economics of the AFC design will also be compared to those of a more traditional first core loading pattern.

Copyright © 2009 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In