0

Full Content is available to subscribers

Subscribe/Learn More  >

Topology Optimization on Targeting Frequency and Mode of Ultrasonic Bonding Tool for Microchip Packaging

[+] Author Affiliations
Chang Yong Ha, Soo Il Lee

University of Seoul, Seoul, Korea

Paper No. IPACK2011-52100, pp. 179-184; 6 pages
doi:10.1115/IPACK2011-52100
From:
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
  • ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1
  • Portland, Oregon, USA, July 6–8, 2011
  • ISBN: 978-0-7918-4461-8
  • Copyright © 2011 by ASME

abstract

Ultrasonic flip chip bonding is one of the widely used methods in semiconductor chip or microsystem packaging and ultrasonic (US) bonding tool is important part for the bonding machine. To perform the proper operation of US bonding, the adequate vibration frequency and mode of US tool is required and the vibration design of the tool is very important. Until recent days, however, the most of practical aspect of the tool design follows the trial-and-error approach. In this study, we introduce the method of topology optimization for US bonding tools. The solid isotropic material with penalization (SIMP) method is used to formulate topology optimization and optimal criteria (OC) method is introduced for the update scheme. The objective resonance frequency and longitudinal mode is tracked using Modal Assurance Criterion (MAC). We compare between 2D and 3D finite element models, and realize two types of US tools which are based on 3D optimization results. To ensure the validity of topology optimization applied to the high frequency and tough devices such as US bonding tools, the vibration displacements at anti-nodal points of the optimized US tools are measured by laser vibrometer.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In