Full Content is available to subscribers

Subscribe/Learn More  >

Enzyme-Mediated Self-Assembly of Highly Ordered Structures From Disordered Proteins

[+] Author Affiliations
Ahmad Athamneh, Justin Barone

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. SMASIS2008-540, pp. 625-628; 4 pages
  • ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Ellicott City, Maryland, USA, October 28–30, 2008
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4332-1 | eISBN: 978-0-7918-3839-6
  • Copyright © 2008 by ASME


Trypsin hydrolysis of wheat gluten produced glutamine-rich short peptides with a tendency to self-assemble into supermolecular structures extrinsic to native wheat gluten. Fourier transform infrared and X-ray diffraction data suggested that the new structures formed resembled that of cross-β amyloid fibrils found in some insect silk and implicated in prion diseases. The superstructures were about 10 μm in diameter with clear right-handed helical configuration and appeared to be bundles of smaller fibrils of about 63 nm in diameter. Results demonstrate the potential for utilizing cheap protein sources and natural mechanisms of protein self-assembly to design advanced nanomaterials that can provide a wide range of structural and chemical functionality.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In