0

Full Content is available to subscribers

Subscribe/Learn More  >

Reduced Mass-Weighted Proper Decomposition for Modal Analysis

[+] Author Affiliations
Venkata K. Yadalam, B. F. Feeny

Michigan State University, East Lansing, MI

Paper No. SMASIS2008-584, pp. 477-484; 8 pages
doi:10.1115/SMASIS2008-584
From:
  • ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Ellicott City, Maryland, USA, October 28–30, 2008
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4332-1 | eISBN: 978-0-7918-3839-6
  • Copyright © 2008 by ASME

abstract

A method of modal analysis by proper orthogonal decomposition for large-order systems of arbitrary mass distribution is outlined. The method involves reduced-order modeling of the system mass distribution so that the discretized mass matrix dimension matches the number of sensed quantities, and hence the dimension of the response ensemble and correlation matrix. In this case, the linear interpolation of unsensed displacements is used to perform an effective lumped mass homogenization. The idea is applied to the modal identification of a mass-spring system and an exponential rod.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In