Full Content is available to subscribers

Subscribe/Learn More  >

Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting

[+] Author Affiliations
D. Dane Quinn, Angela L. Triplett

The University of Akron, Akron, OH

Lawrence A. Bergman

University of Illinois - Urbana-Champaign, Urbana, IL

Alexander F. Vakakis

National Technical University of Athens, Athens, Greece

Paper No. SMASIS2008-463, pp. 377-378; 2 pages
  • ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Ellicott City, Maryland, USA, October 28–30, 2008
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4332-1 | eISBN: 978-0-7918-3839-6
  • Copyright © 2008 by ASME


Self-contained long-lasting energy sources are rapidly increasing in importance as portable electronics and inaccessible devices such as wireless sensors are finding wider and more varied applications. However, in many circumstances replacing power supplies, such as conventional batteries, becomes impractical and the development of a self-renewing source of energy is paramount to the continued development of such devices. The ability to convert ambient mechanical energy to usable electrical energy fills these requirements and one aspect of current research seeks to increase the efficiency and performance of these energy harvesting systems. However, to achieve acceptable performance conventional vibration-based energy harvesting devices based on linear elements must be specifically tuned to match environmental conditions such as the frequency and amplitude of the external vibration. As the environmental conditions vary under ambient conditions the performance of these linear devices is dramatically decreased. The strategy to efficiently harvest energy from low-level, intermittent ambient vibration, proposed herein, relies on the unique properties of a particular class of strongly nonlinear vibrating systems that are referred to as “essentially” nonlinear.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In