Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Performance Assessment of Part-Span Connector of Last Stage Bucket of Low Pressure Steam Turbine

[+] Author Affiliations
Hiteshkumar Mistry, Manisekaran Santhanakrishnan, Subhrajit Dey

General Electric Company, Bangalore, KA, India

John Liu

General Electric Company, Schenectady, NY

Alexander Stein

General Electric Company, Greenville, SC

Jonathon Slepski

General Electric Company, Niskayuna, NY

Paper No. POWER2011-55265, pp. 545-550; 6 pages
  • ASME 2011 Power Conference collocated with JSME ICOPE 2011
  • ASME 2011 Power Conference, Volume 1
  • Denver, Colorado, USA, July 12–14, 2011
  • ISBN: 978-0-7918-4459-5
  • Copyright © 2011 by ASME


Modern steam turbines often utilize very long last stage buckets (LSB’s) in their low-pressure sections to improve efficiency. Some of these LSB’s can range in the order of 5 feet long. These long buckets (aka “blades”) are typically supported at their tip by a tip-shroud and near the mid span by a part span shroud or part span connector (PSC). The PSC is a structural element that connects all the rotor blades, generally at the mid span. It is primarily designed to address various structural issues, often with little attention to its aerodynamic effects. The objective of the current work is to quantify the impact of PSC on aerodynamic performance of the last stage of a LP steam turbine by using detailed CFD analyses. A commercial CFD solver, ANSYS CFX™, is used to solve the last stage domain by setting steam as the working fluid with linear variation of specific heat ratio with temperature. A tetrahedral grid with prismatic layers near the solid walls is generated using ANSYS WORKBENCH™. The results show a cylindrical PSC reduces the efficiency of the last stage by 0.32 pts, of which 0.20 pts is due to the fillet attaching the PSC to the blade. The results also show insignificant interaction of the PSC with the bucket tip aerodynamics. The work presents a detailed flow field analysis and shows the impact of PSC geometry on the aerodynamic performance of last stage of steam turbine. Present work is useful to turbine designer for trade-off studies of performance and reliability of LSB design with or without PSC.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In