Full Content is available to subscribers

Subscribe/Learn More  >

Routes to Large Amplitude Motions of Mooring Systems Due to Slowly-Varying Drift

[+] Author Affiliations
João Paulo J. Matsuura, Michael M. Bernitsas

University of Michigan, Ann Arbor, MI

Paper No. OMAE2004-51476, pp. 847-855; 9 pages
  • ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering
  • 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B
  • Vancouver, British Columbia, Canada, June 20–25, 2004
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3743-2 | eISBN: 0-7918-3738-6
  • Copyright © 2004 by ASME


The effect of second-order slowly-varying wave drift (SVWD) forces on the horizontal plane motions of moored floating vessels has been studied for nearly 30 years. Large amplitude oscillations of moored vessels have been observed in the field or predicted numerically. Often, those have been incorrectly attributed to resonance or time-varying excitation from current/wind. In previous work, the authors have shown that resonance is only one of numerous interaction phenomena, and that large amplitude oscillations can be induced by SVWD forces or even time independent excitation. Currently, there is no mathematical theory to study stability and bifurcations of mooring systems subjected to nonautonomous spectral excitation. Thus, in this paper, bifurcation boundaries are approximated by analyzing simulation data from a grid of points in the design space. These boundaries are plotted in the catastrophe sets of the corresponding autonomous system, for which a design methodology has been developed at the University of Michigan since 1985. This approach has revealed a wealth of dynamics phenomena, characterized by static (pitchfork) and dynamic (Hopf) bifurcations. Interaction of SVWD forces with the Hopf bifurcations may result in motions with amplitudes 2–3 orders of magnitude larger than those due to resonance. On the other hand, in other cases the SVWD/Hopf interaction may reduce or even eliminate limit cycles.

Copyright © 2004 by ASME
Topics: Motion , Mooring



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In