0

Full Content is available to subscribers

Subscribe/Learn More  >

Heave and Pitch Response of an Offshore Platform With Air Cushion Support in Shallow Water

[+] Author Affiliations
K. P. Thiagarajan, M. T. Morris-Thomas, A. Spargo

University of Western Australia, Crawley, WA, Australia

Paper No. OMAE2004-51469, pp. 817-823; 7 pages
doi:10.1115/OMAE2004-51469
From:
  • ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering
  • 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B
  • Vancouver, British Columbia, Canada, June 20–25, 2004
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3743-2 | eISBN: 0-7918-3738-6
  • Copyright © 2004 by ASME

abstract

Model tests were conducted on two 1:100 scaled models of a typical concrete gravity substructure at the University of Western Australia. The two models had dimensions 0.5m length × 0.5m width with the first model being a sealed closed bottom box of height 0.1m and the second model being an open bottom box with skirt length of 0.1m. The open bottom model had the capacity to hold an air cushion with dimensions 0.49m width × 0.49m length × 0.08m height. Each model was floated at a constant draft of 0.1m and tested in water depths ranging between 0.03m (shallow) and 0.8m (deep). The environment comprised of regular waves with periods ranging between 0.6s and 3.5s and amplitude of 0.08m–0.02m. To quantify the dynamic response the heave and pitch motion of each model were measured. The model test results were compared with a theoretical solution based on long wavelength, linear wave assumptions applied to a box shaped floating vessel without an internal free surface. Results show that experimental trends compare reasonably well with analytical solution. Added mass values were predicted from heave and pitch decay tests. The results show that introducing air cushion support into a CGS increases the pitch response, while having little effect of the heave motion. The theory is also used to delineate regions of safe and unsafe tow-out operations of the air cushion structure.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In