0

Full Content is available to subscribers

Subscribe/Learn More  >

Excitation Design for Damage Detection Using Iterative Adjoint-Based Optimization

[+] Author Affiliations
Matthew T. Bement

Los Alamos National Laboratory, Los Alamos, NM

Thomas R. Bewley

University of California - San Diego, La Jolla, CA

Paper No. SMASIS2008-517, pp. 175-183; 9 pages
doi:10.1115/SMASIS2008-517
From:
  • ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Ellicott City, Maryland, USA, October 28–30, 2008
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4332-1 | eISBN: 978-0-7918-3839-6
  • Copyright © 2008 by ASME

abstract

This paper presents a method for designing excitations for the purpose of enhancing the detectability of damage. The field of structural health monitoring (SHM) seeks to assess the integrity of structures for the primary purpose of moving from time-based maintenance to a more cost effective condition-based maintenance strategy. Consequently, most approaches to SHM are nondestructive in nature. One common nondestructive approach is known as vibration-based SHM. In this approach, a structure is instrumented with an array of sensors at various locations. The structure is then excited and its dynamic response recorded. This response is then interrogated to extract features that are correlated with damage. A survey of the SHM literature [1], [2], reveals that a great deal of attention has been paid to the data interrogation portion of the SHM process, with almost no attention paid to the excitation design. This focus is quite understandable in many applications where only ambient excitation is available, such as most civil engineering applications. However there are many applications where the excitation is selectable (e.g., most wave propogation approaches to SHM), and, indeed, where proper excitation selection is essential. As a simple example, consider a beam or column with a crack that is nominally closed due to a preload. If the provided excitation is not sufficient to open and close the crack, the detectability of the crack in the measured output will be severely limited.

Copyright © 2008 by ASME
Topics: Design , Optimization

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In