0

Full Content is available to subscribers

Subscribe/Learn More  >

Damage Detection in Composites Using Vibration Signatures and Mode Shapes

[+] Author Affiliations
K. Oruganti, M. Mehdizadeh, S. John

RMIT University - Bundoora, Bundoora, VIC, Australia

I. Herszberg

Cooperative Research Centre for Advanced Composite Structures, Fishermans Bend, VIC, Australia

Paper No. SMASIS2008-404, pp. 79-90; 12 pages
doi:10.1115/SMASIS2008-404
From:
  • ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Ellicott City, Maryland, USA, October 28–30, 2008
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-4332-1 | eISBN: 978-0-7918-3839-6
  • Copyright © 2008 by ASME

abstract

Composite materials are supplanting conventional metals in aerospace, automotive, civil and marine industries in modern times. However, despite these advantageous properties, they are prone to delamination or matrix cracking. Thus, necessitating the early detection of the crack or flaw before it initiates into a serious defect. An offline approach was commonly used where in the parts examined away from service/operation. This not only consumed a lot of time but risked damage to the part during operation and handling. A detailed understanding of the various proven methods and techniques and their applicability in the analysis of vibration signatures obtained from damaged structures under dynamic conditions is essential to develop a reliable Structural Health Monitoring System (SHMS). This paper includes Vibration based damage detection testing on Carbon/Epoxy composite beams. Such composites are commonly used in the aerospace and marine industry. This material type is gaining acceptance not only in the aerospace industry but also in the automotive and construction industries. The paper reports the processing of the vibration signatures from healthy and damaged composite beams upon excitation and analysis of the mode shapes acquired. The study comprises of testing carbon/epoxy composite beams with various embedded delaminations with a mechanical actuator and a scanning laser vibrometer (SLV) as a sensor for recording the frequency response and analysing the acquired signatures based on Displacement and Curvature Mode Shapes.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In