0

Full Content is available to subscribers

Subscribe/Learn More  >

Study and Application of Two-Level Optimization of Coal Blending for Power Plant Based on On-Line Coal Identification

[+] Author Affiliations
Ji Xia, Peng Peng, Cheng Zhang, Tao Yang, Gang Chen

Huazhong University of Science and Technology (HUST), Wuhan, China

Paper No. POWER2011-55422, pp. 221-226; 6 pages
doi:10.1115/POWER2011-55422
From:
  • ASME 2011 Power Conference collocated with JSME ICOPE 2011
  • ASME 2011 Power Conference, Volume 1
  • Denver, Colorado, USA, July 12–14, 2011
  • ISBN: 978-0-7918-4459-5
  • Copyright © 2011 by ASME

abstract

In china, many thermal power plants have to burn blended coals forced by the complexity of coal type and market tension and transportation pressure of coal purchasing. As a engineering implementation method of coal blending, “different coals grinding in different mills and then mixed burning in the furnace” has many advantages such as low investment, easy to control milling system parameters and can be optimized online, etc, compared with traditional coal blending methods. But it is limited by the number of mills and cannot achieve high-precision ratio of blending. To remedy this shortcoming, a model of two-level optimization of coal blending for the thermal power plant with direct blowing pulverizing system was established in this paper. The tradional coal blending was regarded as first step of optimization. The secondary optimization was implemented by adjusting the outputs of different mills, then the blend was changed to accurate ratio. Furthermore, since the existence of coal bunker, it made a time lag from coal discharge to combustion, meanwhile, the real-time load was unpredictable and the coal utilization rate was inconsistent of each bunker. The three reasons make it uncertain of the current coal of bunker. To identify each coal in the mill(equivalent to bunker) correctly was the basis of achieving the second blending optimization. Therefore, a soft-sensing model of coal moisture based on the heat balance equation was used to take this work. At last, a intelligent coal blending system by the two-level optimization model was developed for a power plant and achieved good results.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In