0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Fatigue Damage on the Offshore Wind Turbines Exposed to Wind and Wave Loads Within the Typhoon Area

[+] Author Affiliations
Atsushi Yamashita

Nippon Steel Corporation, Tokyo, Japan

Kinji Sekita

Tokai University, Shizuoka, Japan

Paper No. OMAE2004-51347, pp. 641-646; 6 pages
doi:10.1115/OMAE2004-51347
From:
  • ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering
  • 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B
  • Vancouver, British Columbia, Canada, June 20–25, 2004
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3743-2 | eISBN: 0-7918-3738-6
  • Copyright © 2004 by ASME

abstract

For the design of offshore wind turbines exposed to wind and wave loads, the method of combining the wind load and the wave load is significantly important to properly calculate the maximum stresses and deflections of the towers and the foundations1) . Similarly, for the analysis of the fatigue damage critical to the structural life, the influences of combined wind and wave loads have not been clearly verified. In this paper fatigue damage at the time of typhoon passing is analyzed using actually recorded data, though intrinsically long-term data more than 10years should be used to properly evaluate the fatigue damage. This paper concludes that the fatigue damage of the tower caused by the wave load is not substantial and, thus, the fatigue damage by the combined wind and wave load is only 2–3% larger than the simple addition of the independent fatigue damages by the wind and the wave loads. The fatigue damage of the tower top, which is required to reduce the diameter in order to minimize the aerodynamic confliction with blades, is larger than that of the tower bottom. The fatigue damage at the foundation by the combined wind and wave load is 25% larger than the simple addition of the wind and wave damages, as the foundation is directly exposed to the wave load. For the foundation, the proper structural section can be designed in order to improve the structural performance against fatigue.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In