Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Efficiency Comparison Between a Conventional and a Hybrid Vehicle Using a Model Based on MATLAB/Simulink and ADAMS

[+] Author Affiliations
Brian S. Fan, Amir Khajepour, Mehrdad Kazerani

University of Waterloo, Waterloo, ON, Canada

Paper No. DETC2008-50028, pp. 855-863; 9 pages
  • ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 13th Design for Manufacturability and the Lifecycle Conference; 5th Symposium on International Design and Design Education; 10th International Conference on Advanced Vehicle and Tire Technologies
  • Brooklyn, New York, USA, August 3–6, 2008
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4329-1 | eISBN: 0-7918-3831-5
  • Copyright © 2008 by ASME


Recent development of hybrid vehicles in the automotive industry has demonstrated the capability of reducing fuel consumption while maintaining vehicle performance. The purpose of this paper is to present a hybrid vehicle model created in MATLAB and ADAMS, and its fuel economy improvement over a conventional vehicle system. The hybrid vehicle model discussed in this paper utilizes the Honda IMA (Integrated Motor Assist) architecture. The powertrain components’ power output calculation and the control logic were modeled in MATLAB/Simulink, while the mechanical inertial components were modeled in ADAMS. Communication between MATLAB and ADAMS was established by ADAMS/Controls. The vehicle model created using MATLAB and ADAMS provides a more accurate, more realistic, and a highly flexible simulation platform. In order to evaluate the accuracy of the MATLAB/ADAMS hybrid vehicle model, simulation results were compared to the published data of ADVISOR. Fuel economy of hybrid and conventional vehicle models were compared using the EPA New York City Cycle (NYCC) and the Highway Fuel Economy Cycle (HWFET). The hybrid vehicle demonstrated 8.9% and 14.3% fuel economy improvement over the conventional vehicle model for the NYCC and HWFET drive cycles, respectively. The MATLAB/ADAMS vehicle model presented in this paper, demonstrated the fuel economy advantage of the hybrid vehicle over the conventional vehicle model, while offering a simulation platform that is modular, flexible, and can be conveniently modified to create different types of vehicle models.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In