Full Content is available to subscribers

Subscribe/Learn More  >

Mitigation of Distortion in an Edge-Welded Bar by Clamping Parameters

[+] Author Affiliations
Mahyar Asadi, John A. Goldak

Carleton University, Ottawa, ON, Canada

Paper No. PVP2011-57955, pp. 1661-1669; 9 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


The objective is to demonstrate a capability developed to explore a design space to minimize distortion and evaluate the sensitivity of the distortion of an edge weld on a 152 × 1220 × 12.5 mm bar of Aluminum 5052-H32 wrt clamping. For each point in the design space, a full computational model that includes transient 3D thermal and stress analysis is solved using VrWeld software [1]. The bar has no displacement constraints other than rigid body constraints and the resulting camber from welding bends the bar. The minimum distortion in this discrete design space is assumed to be the optimal design to minimize the final distortion, i.e., objective function. The design space parameters chosen are clamping parameters, i.e., prescribed displacements, and the release time value in the design space. The bar is fixed at both ends and subjected to a range of prescribed displacements opposite to the direction of the camber. In the first set of tests the prescribed displacement is applied directly in the middle of the bar and in the second set of tests the displacement field is prescribed as a parabolic displacement along the full length of the bottom of the bar. In addition to the effect of the prescribed displacement on final distortion is shown to be highly correlated with the delay time at which the prescribed displacement is released after the weld is finished. The best pair of the prescribed value and the release time value in the design space. The distortion and residual stress fields in the mitigated bar with a nodal prescribed displacement in the middle of the bar and the mitigated bar with a parabolic prescribed displacement along the bottom surface of the bar are compared.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In