Full Content is available to subscribers

Subscribe/Learn More  >

Statistical Assessment of Crack Initiation at Simulated Flaws due to Hydrided Region Overload in CANDU Zr-2.5%Nb Pressure Tube Material

[+] Author Affiliations
Leonid Gutkin, Douglas A. Scarth

Kinectrics, Inc., Toronto, ON, Canada

Paper No. PVP2011-57905, pp. 1347-1359; 13 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


CANDU Zr-2.5%Nb pressure tubes are susceptible to formation of hydrided regions at the locations of stress concentration, such as in-service flaws. When the applied stress acting on a flaw with an existing hydrided region exceeds the stress at which the hydrided region has been formed, hydrided region overload may occur. Probabilistic methodology is being developed to evaluate in-service flaws in the pressure tubes for crack initiation due to hydrided region overload. Statistical assessment of relevant experimental data on the overload resistance of Zr-2.5%Nb has been performed as part of this development. The results of this assessment indicate that the critical nominal stress for crack initiation due to hydrided region overload increases with increasing the nominal applied stress during hydrided region formation, decreasing the stress concentration factor and increasing the threshold stress intensity factor for initiation of delayed hydride cracking. These findings are consistent with our fundamental understanding of hydrided region overload, as well as with the previous modeling work by E. Smith, as referenced in the paper. The overload resistance also appears to increase with the number of thermal cycles in the course of hydride formation. The results of this assessment have been used to develop a preliminary probabilistic model to predict the critical stress for crack initiation due to hydrided region overload under ratcheting hydride formation conditions, as well as a comprehensive experimental program to further investigate the overload behavior of CANDU pressure tube material.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In