Full Content is available to subscribers

Subscribe/Learn More  >

Elastic-Plastic Constraint Analysis of Semi-Elliptic Surface Cracks in X100 Pipeline Steel

[+] Author Affiliations
Z. X. Wang, R. F. Zhang

Jiangsu University, Zhenjiang, Jiangsu, China

Y. J. Chao

University of South Carolina, Columbia, SC

P. S. Lam

Savannah River National Laboratory, Aiken, SC

Paper No. PVP2011-57715, pp. 1325-1334; 10 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


In the framework of the J-A2 fracture theory, the crack driving force J and the crack tip constraint parameter A2 are used to describe the near crack tip stress and deformation fields. These two parameters, J and A2 , were calculated from three-dimensional finite element results for semi-elliptic surface cracks with various lengths and depths in X100 pipeline steel. It was found that, under a uniform far field tensile loading, A2 increases rapidly to a nearly constant value along the crack front from the free surface to the deepest part of the crack. A similar trend was found for the J-integral distribution except in the case of a semi-circular crack. In addition, for a given elliptic crack configuration, A2 showed significant J-integral dependence when the crack front approached the free surface, where a strong three-dimensional effect is apparent. On the other hand, at the deepest part of the crack, A2 converged to a constant value. Two-dimensional plane strain calculations were also performed for single edge-notched tension specimens (SENT), where the crack length corresponds to the depth of the surface crack. The constraint of these two configurations (semi-elliptic crack and SENT) were compared under the same crack driving force (J-integral). In general, the constraint at the deepest crack front of an elliptic crack is higher than that of the corresponding SENT, especially in mid- to large scale yielding condition where J-integral is relatively large. It can be concluded that using fracture toughness determined from SENT specimens to predict surface flaw stability may lead to non-conservative result.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In