Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Calculations on Countercurrent Air-Water Flow in Small-Scale Models of a PWR Hot Leg Using a VOF Model

[+] Author Affiliations
Michio Murase, Yoichi Utanohara, Ikuo Kinoshita

Institute of Nuclear Safety System, Inc., Mihama, Fukui, Japan

Noritoshi Minami

Institute of Nuclear Safety System, Inc.; Kobe University, Mihama, Fukui, Japan

Akio Tomiyama

Kobe University, Kobe, Hyogo, Japan

Paper No. ICONE17-75116, pp. 141-148; 8 pages
  • 17th International Conference on Nuclear Engineering
  • Volume 3: Thermal Hydraulics; Current Advanced Reactors: Plant Design, Construction, Workforce and Public Acceptance
  • Brussels, Belgium, July 12–16, 2009
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4353-6 | eISBN: 978-0-7918-3852-5
  • Copyright © 2009 by ASME


In the case of loss of the residual heat removal (RHR) systems under mid-loop operation during shutdown of a PWR plant, reflux cooling by a steam generator (SG) is expected, and the generated steam in a reactor core and the condensed water in the SG form a countercurrent flow in a hot leg, which consists of a horizontal pipe, an elbow and an inclined pipe. In order to improve a countercurrent flow model of a transient analysis code, countercurrent air-water tests were conducted using the 1/15th scale model of the PWR hot leg at Kobe University and the authors conducted numerical calculations of the 1/15th scale tests using the thermal-hydraulic analysis code FLUENT6.3.26 and an Euler-Euler model or a VOF model. In the tests and calculations, however, the expansion of the inclined pipe in the PWR hot leg was not simulated. In this study, using the VOF model, the authors conducted numerical calculations for a 1/15th scale model of the PWR hot leg with the expansion of the inclined pipe, which mitigates CCFL (countercurrent flow limitation) there. The calculated flow patterns in the hot leg using the VOF model were quite different with the data for the 1/15th tests without the expansion of the inclined pipe due to underestimation of CCFL characteristics at the upper end of the inclined pipe, but became similar with the observed results for the 1/15th scale model with the expansion of the inclined pipe due to the mitigation of CCFL at the inclined pipe. The results indicate that the VOF model could not correctly calculate air-water two-phase flows at the upper part of the inclined pipe but could calculate two-phase flows in the horizontal pipe.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In