Full Content is available to subscribers

Subscribe/Learn More  >

Development of In Situ Techniques for Torsion and Tension Testing in Hydrogen Environment

[+] Author Affiliations
John Jy-An Wang, Fei Ren, Wei Zhang, Zhili Feng, Lawrence Anovitz

Oak Ridge National Laboratory, Oak Ridge, TN

Zhe Chen

Michigan State University, East Lansing, MI

Hanbing Xu

Imtech Corp., Knoxville, TN

Paper No. PVP2011-57676, pp. 1317-1323; 7 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed to the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to structural integrity. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, two special testing apparatus were designed to facilitate in situ fracture testing in H2 . In addition to a multi-notch tensile fixture, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using a Gleeble machine, which illustrated the effect of welding on the fracture toughness of this material.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In