Full Content is available to subscribers

Subscribe/Learn More  >

Complex Crack Stability in Dissimilar Metal Welds: Background and Test Plan

[+] Author Affiliations
D. Rudland

US Nuclear Regulatory Commission, Washington, DC

P. Scott, R. Olson, A. Cox

Battelle, Columbus, OH

Paper No. PVP2011-57535, pp. 1269-1277; 9 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


Typically in flaw evaluation procedures, idealized flaw shapes are assumed for both subcritical crack growth and critical crack stability analyses. Past NRC-sponsored research have developed estimation schemes for predicting the load-carrying capacity of idealized flaws in nuclear grade piping and similar metal welds at the operating conditions of nuclear power reactors. However, recent analyses have shown that growth of primary water stress corrosion cracks (PWSCC) in dissimilar metal (DM) welds is not ideal; in fact, very unusual complex crack shapes may form, i.e., a very long surface crack that has a finite length through-wall crack in the same plane. Even though some experimental data on base metal cracks exist to demonstrate that complex shaped cracks in high toughness materials fail under limit load conditions, other experiments demonstrate that the tearing resistance is significantly reduced. At this point, no experimental data exists for complex cracks in DM welds. In addition, it is unclear whether the idealized estimation schemes developed can be used to predict the load carrying capacity of these complex-shaped flaws, even though they have been used in past analyses by the nuclear industry. Finally, it is unclear what material strength data should be used to assess the stability of a crack in a DM weld. The NRC Office of Nuclear Regulatory Research (RES), with their contractor Battelle Memorial Institute, has begun an experimental program to confirm the stability behavior of these complex shaped flaws in DM welds. A combination of thirteen full-scale pipe experiments and a variety of laboratory experiments are planned. This paper will summarize the past base metal complex-cracked pipe experiments, and the current idealized flaw load carrying capacity estimation schemes. In addition, the DM weld complex cracked pipe experimental test matrix will be presented. Finally, plans for using these results to confirm the applicability of idealized flaw stability procedures are discussed.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In