Full Content is available to subscribers

Subscribe/Learn More  >

Crack Tip Behaviour in Residual Stress Field: Finite Element Modelling and Neutron Diffraction Measurements

[+] Author Affiliations
H. Dai, P. J. Withers

University of Manchester, Manchester, UK

J. F. Kelleher

Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK

Paper No. PVP2011-57316, pp. 1261-1267; 7 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


Simple analyses of fracture and fatigue often make use of the stress intensity at a crack tip or the J-integral surrounding it. However, there is no universally accepted method of including the effect of residual stress in these values, even though the qualitative effect of residual stress on crack growth is well known. In this work, we create a cracked compact tension C(T) specimen with a residual stress field that affects the crack tip behaviour, in particular by altering the level of expected crack closure. Neutron diffraction measurements under in situ applied loading reveal strain distributions consistent with an increased level of closure when the crack tip is in a state of compressive residual stress. Through finite element modelling of the samples studied, we show that the residual stress in these samples redistributes as the crack grows, which changes the level of crack closure for any given crack length and applied load. As crack closure is often considered in fatigue analysis by deriving an ‘effective’ stress intensity based on the applied load needed to overcome the closure and open the crack, the model is used to compare this approach with numerical calculations of the J-integral for different crack lengths.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In