0

Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Models of Reliability of Cast Austenitic Stainless Steel Piping

[+] Author Affiliations
Haiyang Qian, David Harris, Timothy J. Griesbach

Structural Integrity Associates, Inc., San Jose, CA

Paper No. PVP2011-57270, pp. 1255-1260; 6 pages
doi:10.1115/PVP2011-57270
From:
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME

abstract

Thermal embrittlement of cast austenitic stainless steel piping is of growing concern as nuclear power plants age. The difficulty of inspecting these components adds to the concerns regarding their reliability, and an added concern is the presence of known defects introduced during the casting fabrication process. The possible presence of defects and difficulty of inspection complicate the development of programs to manage the risk contributed by these embrittled components. Much work has been done in the past to characterize changes in tensile properties and fracture toughness as functions of time, temperature, composition, and delta ferrite content, but this work has shown a great deal of scatter in relationships between the important variables. The scatter in material correlations, difficulty of inspection and presence of initial defects calls for a probabilistic approach to the problem. The purpose of this study is to describe a probabilistic fracture mechanics analysis of the maximum allowable flaw sizes in cast austenitic stainless steel piping in commercial power reactors. Attention is focused on fully embrittled CF8M material, and the probability of failure for a given crack size, load and composition is predicted considering scatter in tensile properties and fracture toughness (fracture toughness is expressed as a crack growth resistance relation in terms of J-Δa). Random loads can also be included in the analysis, with results generated by Monte Carlo simulation. This paper presents preliminary results for CF8M to demonstrate the sensitivity of key input variables. The outcome of this study is the flaw sizes (length and depth) that will fail with a given probability when a given load is applied.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In