0

Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Nonlinear Barge Motions: Part I — Deterministic Models Development, Identification and Calibration

[+] Author Affiliations
Solomon C. Yim, Tongchate Nakhata

Oregon State University, Corvallis, OR

Warren A. Bartel, Erick T. Huang

Naval Facilities Engineering Service Center, Port Hueneme, CA

Paper No. OMAE2004-51130, pp. 281-291; 11 pages
doi:10.1115/OMAE2004-51130
From:
  • ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering
  • 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B
  • Vancouver, British Columbia, Canada, June 20–25, 2004
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3743-2 | eISBN: 0-7918-3738-6
  • Copyright © 2004 by ASME

abstract

This paper focuses on the development of optimal deterministic, nonlinearly coupled barge motion models, identification of their system parameters and calibration of their prediction capability using experimental results. The ultimate objective is to develop accurate yet sufficiently low degree-of-freedom stochastic models suitable for efficient probabilistic stability and reliability analyses of US Naval barges for preliminary design and operation guideline development (see Part II). First a three-degree-of-freedom (3DOF) fully coupled Roll-Heave-Sway model, which features realistic and practical high-degree polynomial approximations of rigid body motion relations, hydrostatic and hydrodynamic force-moment specifically suitable for barges, is examined. The hydrostatic force-moment relationship includes effects of the barge’s sharp edge and combined roll-heave states, and the hydrodynamic force-moment specifically suitable for barges, is examined. The hydrostatic force-moment relationship includes effects of the barge’s sharp edge and combined roll-heave state, and the hydrodynamic terms are in a “Morison” type quadratic form. System parameters of the 3DOF model are identified using physical model test results from several regular wave cases. The predictive capability of the model is then calibrated using results from a random wave test case. Recognizing the negligible sway influence on coupled roll and heave motions and overall barge stability, and in an attempt to reduce anticipated stochastic computational efforts in stability analysis, a 2DOF Roll-Heave model is derived by uncoupling sway from the roll-heave governing equations of motion. Time domain simulations are conducted using the (3DOF) Roll-Heave-Sway and the (2DOF) Roll-Heave models for regular and random wave cases to validate the model assumptions and to assess their (numerical) prediction capabilities.

Copyright © 2004 by ASME
Topics: Motion , Calibration

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In