0

Full Content is available to subscribers

Subscribe/Learn More  >

A Frequency Domain Approach for Random Fatigue Analysis of Steel Catenary Risers at Brazil’s Deep Waters

[+] Author Affiliations
Claudio Marcio Silva Dantas, Marcos Queija de Siqueira, Gilberto Bruno Ellwanger

COPPE/UFRJ, Rio de Janeiro, RJ, Brazil

Ana Lúcia F. Lima Torres, Marcio Martins Mourelle

PETROBRAS S.A., Rio de Janeiro, RJ, Brazil

Paper No. OMAE2004-51104, pp. 199-209; 11 pages
doi:10.1115/OMAE2004-51104
From:
  • ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering
  • 23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 1, Parts A and B
  • Vancouver, British Columbia, Canada, June 20–25, 2004
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3743-2 | eISBN: 0-7918-3738-6
  • Copyright © 2004 by ASME

abstract

The steel catenary riser was adopted by Petrobras as a cost-effective alternative for oil and gas export and for water injection lines on deepwater fields, where large diameter flexible risers present technical and economic limitations. The installation of the P-18 SCR was a pioneer project of a free-hanging steel catenary riser linked to a semi-submersible [1] and demonstrated the technical feasibility of the concept. Fatigue damage verification is an important issue in SCR design, demanding a high number of loading cases to be analyzed. The random time domain nonlinear analysis is considered an attractive and reliable tool for fatigue analysis as nonlinearities are properly modeled and the random behaviour of environmental loadings is considered. As time domain analysis is high computer time consuming, the frequency domain analysis has been considered as an alternative tool for the initial phases of riser design to be used mainly for fatigue damage verification. This paper presents a methodology developed to perform a linearized frequency domain analysis aiming at fatigue damage verification. Two drilling risers were analyzed with the frequency domain procedure developed. The model of a steel lazy-wave riser was analyzed both in frequency and time domain in order to compare fatigue damage results. The analyses were performed using the Petrobras’s in-house computer codes ANFLEX, ALFREQ and POSFAL developed and implemented as part of projects from CENPES/PETROBRAS with “COPPE/UFRJ -The Engineering Post-Graduating Coordination of the Federal University of Rio de Janeiro”.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In