0

Full Content is available to subscribers

Subscribe/Learn More  >

Laser Beam Trajectory Generation for Micro-Manufacturing With a Two-Photon Polymerization Technique

[+] Author Affiliations
Chao-Yaug Liao

Grenoble Institute of Technology, Grenoble, France; SPECTRO, Saint Martin d’Hères, France; National Taiwan University, Taipei, Taiwan

Jean-Claude Léon, Cédric Masclet

Grenoble Institute of Technology, Grenoble, France

Michel Bouriau, Patrice L. Baldeck

SPECTRO, Saint Martin d’Hères, France

Tien-Tung Chung

National Taiwan University, Taipei, Taiwan

Paper No. DETC2008-49403, pp. 49-58; 10 pages
doi:10.1115/DETC2008-49403
From:
  • ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 13th Design for Manufacturability and the Lifecycle Conference; 5th Symposium on International Design and Design Education; 10th International Conference on Advanced Vehicle and Tire Technologies
  • Brooklyn, New York, USA, August 3–6, 2008
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4329-1 | eISBN: 0-7918-3831-5
  • Copyright © 2008 by ASME

abstract

Micro-manufacturing with a Two-Photon Polymerization (TPP) technique is an emerging manufacturing technique to produce small objects of tens of μm size. Combined with three axes numerically controlled equipment, it becomes possible to produce a wide diversity of product shapes. As a result, controlling this equipment while taking into account the manufacturing constraints raises the problem of trajectory generation. It is the purpose of this paper to show how this trajectory generation process can take advantage of the three numerically controlled axes to produce complex-shaped objects. Here, it is shown how the concept of layered manufacturing commonly used in rapid prototyping can be superseded by a combination of different path planning strategies, much in the same way free-form surfaces or complex shapes can be produced with classical milling machines. Through the proposed process, the boundary decomposition process applied to an object reduces to a set of sub-domains where groups of parallel trajectories are generated. The proposed trajectory generation process takes also into account the manufacturing constraints specific to TPP to produce microstructures of high quality. Examples of products illustrate the proposed approach and demonstrate its capabilities.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In