0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanomechanical Peeling of Carbon Nanotubes and Nanocoils Studied Using the Atomic Force Microscope

[+] Author Affiliations
Mark C. Strus, Arvind Raman, Luis Zalamea, R. Byron Pipes

Purdue University, West Lafayette, IN

Paper No. DETC2008-50020, pp. 775-781; 7 pages
doi:10.1115/DETC2008-50020
From:
  • ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 20th International Conference on Design Theory and Methodology; Second International Conference on Micro- and Nanosystems
  • Brooklyn, New York, USA, August 3–6, 2008
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4328-4 | eISBN: 0-7918-3831-5
  • Copyright © 2008 by ASME

abstract

The physics of adhesion of one-dimensional nanostructures such as nanotubes, nanocoils, and nanowires is of great interest to the functioning and reliability of nanoelectronic devices and the development of high-strength, lightweight nanocomposites. Here, we extend previous work using the Atomic Force Microscope (AFM) to investigate quantitatively the physics of nanomechanical peeling of carbon nanotubes (CNTs) and nanocoils on different substrates. We summarize previous modeling results which predict that an initially straight nanotube peeled from a surface may transition suddenly between different geometric configurations with vastly different interfacial energies. In contrast, nanocoils display a sawtooth peeling force curve indicating the sequential release of discrete pinning points. We resolve differences in nanotube peeling energies at attoJoule levels on different materials, thus opening up the possibility of sensitive screening of fiber coatings or material surfaces for improved adhesion in nanocomposites.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In