Full Content is available to subscribers

Subscribe/Learn More  >

The Stability of Fine, Sub-Grain Microstructures Within Carbon Depleted Regions of Dissimilar Metal, Ferritic, Creep Resistant Welds

[+] Author Affiliations
Karl Dawson, Gordon J. Tatlock

University of Liverpool, Liverpool, UK

Paper No. PVP2011-57868, pp. 433-441; 9 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME


The duration of post weld heat treatments (PWHT) applied to thick section multi-pass dissimilar metal welds (DMW), involving ferritic creep resistant steels of differing chromium content, are shown to have a considerable impact on the performance of the welded joint. Welding consumables of alloy types P22 and P24 have been used to form joints with P91 base alloy which were subsequently post weld heat treated for varying durations. High resolution transmission electron microscopy (TEM) has been exploited in the characterisation of precipitation in the weld material and the heat affected zone. It has been shown that uphill diffusion of carbon from the low to the higher alloy material during PWHT and creep test conditions occurs in all specimens. Selected area diffraction (SAD) and convergent beam electron diffraction (CBED) studies of carbon extraction replicas reveal extensive dissolution of M23 C6 and M7 C3 carbides in the decarburised zone of the weld alloy subsequent to post weld heat treatments. However, welds completed using Nb and V containing consumables retain a fine distribution of MX precipitation in the carbon depleted regions after PWHT. The retention of these microstructure stabilising carbonitrides facilitates the preservation of an ultra fine sub-grain microstructure, thus avoiding recrytallisation which is invariably observed in post weld heat treated P22:P91 DMWs. Cell size comparisons of the sub-grain microstructures have been investigated utilising channelling contrast back scattered scanning electron images of as welded and post weld heat treated material.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In