Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Electromechanical Coupling on the Young’s Modulus of Zinc Oxide Nanowires

[+] Author Affiliations
A. V. Desai, M. A. Haque

Pennsylvania State University, University Park, PA

Paper No. DETC2008-49911, pp. 553-559; 7 pages
  • ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 20th International Conference on Design Theory and Methodology; Second International Conference on Micro- and Nanosystems
  • Brooklyn, New York, USA, August 3–6, 2008
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4328-4 | eISBN: 0-7918-3831-5
  • Copyright © 2008 by ASME


The Young’s modulus of zinc oxide nanowires was measured to be significantly lower than bulk zinc oxide, which cannot be explained within the framework of existing theories. We propose that the strong electromechanical coupling in piezoelectric materials, such as zinc oxide, influences the measured mechanical properties. The asymmetric wurtzite crystal structure and the ionic nature of the molecular bonding result in internal electric fields during straining of the zinc oxide nanowire, which in turn lead to reduction in the measured modulus. In case of flexural deformation, additional electromechanical coupling is present due to the flexoelectric effect.

Copyright © 2008 by ASME
Topics: Elasticity , Nanowires



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In