0

Full Content is available to subscribers

Subscribe/Learn More  >

Self-Sealing Pneumatic Pressure Vessel With Passive and Active Methods

[+] Author Affiliations
David A. Hurley, Dryver R. Huston

University of Vermont, Burlington, VT

Paper No. PVP2011-58008, pp. 107-112; 6 pages
doi:10.1115/PVP2011-58008
From:
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME

abstract

This paper discusses passive and active self-sealing techniques for pressure vessels. The history and state-of-the-art of self-sealing fluid containment vessels is followed by a discussion of challenges specific to implementing self-sealing on pressure vessels. These challenges include large pressure differentials, high speed flows through the leak, the need for relatively rapid response, and embedding the sealing techniques as a composite within a pressure vessel while satisfying practical constraints of weight and size. A benchtop pneumatic test bed provides a setting for evaluating self-sealing technologies. Testing focuses on experiments and models of passive techniques that use shear-thickening fluid coagulation for plugging. This is followed by results that demonstrate the use of active sealing methods with coordinated leak sensing and activated sealing. Acoustic emission (AE) monitoring detects the leak. Electrocoagulation and thermoplastic flow provide the means of controlled sealing. A separate study explores AE testing as a tool for damage assessment. Combining AE testing with neural-network pattern recognition algorithms enables leak detection, location, and size assessment.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In