0

Full Content is available to subscribers

Subscribe/Learn More  >

Selective Laser Melting of Oxide Dispersion Strengthened Steels

[+] Author Affiliations
Thomas Boegelein, Ashwin Rao, Andrew R. Jones, Gordon J. Tatlock

University of Liverpool, Liverpool, UK

Paper No. PVP2011-57892, pp. 19-28; 10 pages
doi:10.1115/PVP2011-57892
From:
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4456-4
  • Copyright © 2011 by ASME

abstract

Oxide Dispersion Strengthened (ODS) alloys are a long established class of materials manufactured using powder metallurgy techniques. These alloys can offer exceptional high temperature strength and resistance to radiation damage, thus are envisioned to be used in a number of future nuclear and fossil energy power applications. However, due to the manufacturing steps involved, the overall cost to build components with these materials can be high. This paper presents work conducted to assess the feasibility of applying Selective Laser Melting (SLM) techniques to either coat or direct build on substrates with Fe-based Oxide Dispersion Strengthened (ODS) alloys. SLM is a rapid prototyping technique which can be used to manufacture near net-shape solid components from layered metallic powder beds. Two different geometries were of interest in this study — a simple button configuration with a nickel-base superalloy (IN939) substrate and a more complex hexagonal shaped wall with a mild steel substrate. Powders of PM2000 (a FeCrAl based ODS alloy) were deposited in both cases. Heat treatments were subsequently conducted on these structures to investigate effects of temperature on the bond characteristics and secondary recrystallisation. Electron microscopy examination revealed significant amounts of diffusion between the nickel and the ODS powders which enhances the bond strength. The studies have revealed the existence of a strong bond between the substrate and the interface even after prolonged exposure at elevated temperatures.

Copyright © 2011 by ASME
Topics: Lasers , Steel , Melting

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In