Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of the Flow-Sound Interaction Mechanisms of Two Side-by-Side Cylinders in Cross-Flow

[+] Author Affiliations
Atef Mohany, Marwan Hassan

University of New Brunswick, Fredericton, NB, Canada

Samir Ziada

McMaster University, Hamilton, ON, Canada

Paper No. PVP2011-57282, pp. 219-226; 8 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4454-0
  • Copyright © 2011 by ASME


A numerical simulation of the flow-excited acoustic resonance for the case of two side-by-side cylinders in cross-flow is performed. One spacing ratio between the cylinders, T/D = 1.25, is investigated, where D is the diameter of the cylinders and T is the center-to-center distance between them. The unsteady flow field is simulated using a finite-volume method at a Reynolds number of 25000. This simulation is then coupled with a finite element simulation of the resonant sound field, by means of Howe’s theory of aerodynamics sound, to reveal the details of flow-sound interaction mechanisms, including the nature and the locations of the aeroacoustic sources in the flow field. At the off resonance conditions two distinct vortex shedding frequencies are observed. These are associated with the wider and narrower wakes of the cylinders. However, when acoustic resonance is initiated the bi-stable flow phenomenon is eliminated and the vortex shedding from both cylinders occurs at a single frequency that is between those observed before the onset of acoustic resonance. Moreover, three main aeroacoustic sources are observed in the wake of the two cylinders. Two aeroacoustic sources are located just downstream of each cylinder and one aeroacoustic source is located in the gap between the cylinders. The numerical results are compared with the experimental results presented in a previous investigation and favourable agreement is obtained.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In