0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of the Phase Lag Causing Fluidelastic Instability in Tube Bundles

[+] Author Affiliations
Ahmed Khalifa, David Weaver, Samir Ziada

McMaster University, Hamilton, ON, Canada

Paper No. PVP2011-57263, pp. 211-218; 8 pages
doi:10.1115/PVP2011-57263
From:
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4454-0
  • Copyright © 2011 by ASME

abstract

The phenomenon of fluidelastic instability forms a major limitation on the performance of tube and shell heat exchangers. It is believed that fluidelastic instability is attributed to two main mechanisms; the first is called the “Damping Mechanism”, while the second is called the “Stiffness Mechanism”. It is established in the literature that in order to model the damping controlled fluidelastic instability, a finite time delay between tube vibration and fluid response has to be introduced. Experimental investigation of the time delay between structural motion and the induced fluid forces is detailed in the present study. A parallel triangular tube array consisting of seven rows and six columns of aluminum tubes is built with a pitch ratio of 1.54. Hot-wire measurements of the interstitial flow perturbations are recorded while monitoring the tube vibrations in the lift and drag directions. Pressure transducers are installed inside the instrumented tubes to monitor the fluid forces. The phase lag between tube vibration and flow perturbation is obtained at different locations in the array. The effect of tube frequency, turbulence level, location of measurements, and mean gap velocity on the relative phase values is investigated. It is found that there are two well-defined regions of phase trends along the flow channel. It is concluded from this study that the time delay between tube vibration and downstream flow perturbation is associated with the vorticity convection downstream, while the time delay for upstream perturbations is associated with the effect of flow separation and vorticity generation which is propagated upstream from the vibrating tube.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In