Full Content is available to subscribers

Subscribe/Learn More  >

Simulation and Evaluation of Thermal Stratification in a Sloped Surge Nozzle Correlated With Plant Measurements

[+] Author Affiliations
T. L. Meikle, V, E. D. Johnson, M. A. Gray, N. L. Glunt, J. D. Burr

Westinghouse Electric Company, LLC, Cranberry Township, PA

Paper No. PVP2011-57700, pp. 625-634; 10 pages
  • ASME 2011 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Baltimore, Maryland, USA, July 17–21, 2011
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4453-3
  • Copyright © 2011 by ASME


Thermal stratification is a common phenomenon in the surge lines of Pressurized Water Reactors (PWR). The stratification temperature difference (ΔT) and cyclic action severities are most prevalent during the heatup and cooldown operations of a PWR, when the system ΔT between the pressurizer and the Reactor Coolant System (RCS) hot leg is the greatest and system inventory fluctuations are highest. This paper describes the computer simulation of thermal stratification loading in a surge line nozzle connected to the RCS hot leg to correlate to unusual behavior of plant sensor data in the hot leg and the subsequent development of a monitoring model to account for thermal stratification effects in the transient and fatigue evaluation performed in the online monitoring system. What makes this particular investigation unique is the geometry of the nozzle of interest. In many PWRs, the surge line and the surge line hot leg nozzle are horizontal at the hot leg connection. This particular nozzle is oriented at an upward angle before the attached surge line piping bends into a horizontal configuration. This orientation required a more detailed treatment of the stratification effects than has been typically developed for horizontal nozzles, with respect to both the orientation and the potentially detrimental effects of increased cyclic behavior indicated by nearby temperature sensors. This investigation combined Computational Fluid Dynamics (CFD) modeling of the system to correlate the plant data with a detailed stress model that will enable the fatigue usage factor calculation in the plant’s online transient and fatigue monitoring system.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In